CAXT__1W Serie DC/DC Converters

DC-DC Power Supply Module/1500V Isolation

Fixed Voltage Input/Unregulated DualOutput/

Product features:

Isolation voltage: 1500Vdc isolation Operating temperature: $-45^{\circ}\text{C}-85^{\circ}\text{C}$ Stable performance, high reliability

MTBF≥2 million hours
Flame-retardant packaging
Meeting UL94-V0 requirements
International standard pinout (Pin 1/2/4/5/6)

Surface-mount design
No additional components required
Compliant with the RoHS Directive

Module selection guide						
	Input		Output			Conversion efficiency
Model number	Nominal	Voltage	Rated	Minimum	Maximum	
	voltage	Range	voltage	Current	current	(%)
	(V)	(V)	(V)	(mA)	(mA)	
CAXT0503-1W			±3.3	±15	±150	76
CAXT0505-1W			± 5	±10	±100	81
CAXT0509-1W	_	4555	±9	±6	±55	82
CAXT0512-1W	5	4.5-5.5	±12	±4	±42	81
CAXT0515-1W			±15	±3	±33	82
CAXT0524-1W			±24	±2	±21	80
CAXT1203-1W			±3.3	±15	±150	76
CAXT1205-1W			± 5	±10	±100	79
CAXT1209-1W	12	10.0.10.0	±9	± 6	±55	80
CAXT1212-1W	12	10.8-13.2	±12	±4	±42	82
CAXT1215-1W			±15	±3	±33	82
CAXT1224-1W			±24	±2	±21	80
CAXT2403-1W	24 21.6-26		±3.3	±15	±150	76
CAXT2405-1W			± 5	±10	±100	78
CAXT2409-1W		21.6-26.4	±9	±6	±55	79
CAXT2412-1W			±12	± 4	±42	80
CAXT2415-1W			±15	± 3	±33	80
CAXT2424-1W			±24	±2	± 21	80

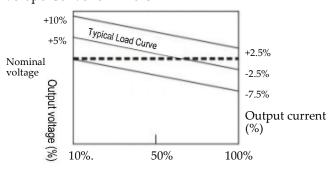
General characteristics			
Switching frequency	100KHz	100% load, nominal input voltage	
Output short-circuit duration		Long duration, resettable	
Casing's temperature rise during operation	15°C (Typ.)	25°C (Max)	
Temperature coefficient	0.03%/℃	100% full load	
Pin soldering temperature	300℃	Soldering time≤3s	
Isolation voltage (input and	1500VDC	Test time: 1 minute	
output)		Leakage current: less than 1mA	
Insulation resistance	1000ΜΩ	Insulation voltage: 500V	
Operating temperature	-40∼+85°C	Operating ambient temperature	
Storage temperature	-55∼+125℃		
Storage humidity	<95%	Non-condensing	
Cooling method	Natural air cooling		
Weight	SIP series: 1.2g	Standard	

Input characteristics

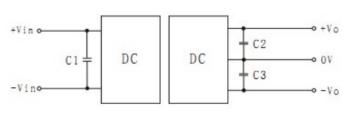
Voltage range	≤±10%	
Filtering	Ceramic capacitor	
No-load power consumption	10% rated power (typical value)	

Output characteristics

Item	Value	Test conditions	
Linear voltage regulation rate ±1.2 (Max)		Input voltage variation 1%	
Load regulation	≤±10% (Typ); ±15% (Max)	10% to 100% load	
Output voltage accuracy	Please refer to the Envelope	100% full load	
	Curve for Errors		
Ripple and noise	≤75mVp-p (Typ)	Bandwidth: 20MHz	
	100mVp-p (Max)		

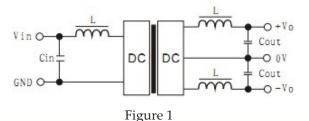

Unless otherwise specified, all parameters are tested under nominal input voltage, resistive load, and at room temperature of 25°C.

Curves for typical characteristics


Temperature Curve

Envelope Curve for Errors

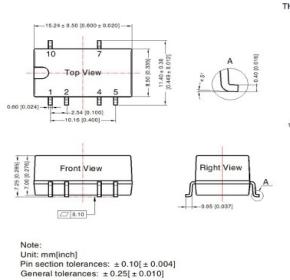
Recommended circuit for basic application



Capacitive load table:

Input	External	Output	External
voltage	capacitor	voltage	capacitor
(VDC)	(uF)	(VDC)	(uF)
3.3 or 5	4.7	±3.3 or ±5	10
12	2.2	±9	4.7
15or24	1	±12	2.2
		±15or±24	1 or 0.47

Caution


- 1. Output load requirements: Avoid no-load operation. When the actual power consumption of the load is less than 10% of the module's rated output power or if there is a no-load condition, it is recommended to connect a dummy load at the output end or choose a module with a smaller rated power. The dummy load (resistor) can be calculated as 5-10% of the module's rated power. Value of the resistance = $U2 / (10\% \times 1W)$.
- 2. Overload protection: Under normal operating conditions, the output circuit of this product has no protection against overload conditions. The simplest method is to connect a resettable fuse in series at the input end or to add a circuit breaker to the circuit.
- 3. The capacitance of the external capacitor at the output end should not be too large; otherwise, it may cause overcurrent or poor startup during module initiation. The specific value of the capacitance should be according to the capacitive load table.
- 4. For applications with high ripple and noise requirements, an external LC filter circuit should be used (as shown in Figure 1). It is recommended to use ceramic capacitors or high-frequency low-impedance electrolytic capacitors for Cout. Using tantalum capacitors may cause module damage.
- 5. The simplest method for output voltage regulation, overvoltage protection, and overcurrent protection is to connect a linear regulator with over temperature protection in series at the input or output end (as shown in Figure 2).

Vin O REG DC DC REG O +Vo

Figure 2

Dimensions and pinout

Note: Grid 2.54*2.54mm

Out
Mark
GND
Vin
ov
-Vo
+Vo
NC

NC: Pin to be isolated from circuitry