

Typical Features

- ◆Wide input voltage range 2:1
- High efficiency up to 89%
- ◆Low no-load power consumption
- ◆Operating Temperature:-40°C to +105°C
- High isolation voltage, input-output 2500VAC, input-case 2100VAC
- Protection: input under voltage, output over current, over voltage, short circuit, over temp
- ◆Standard 1/4 brick

CD200-280S12 high efficiency 1/4 brick dc-dc converter, rated input voltage 280VDC, output 12V/200W, no minimum load, wide input voltage 180-425VDC, regulated single output, high isolation insulation voltage, allowing operating temperature up to 105 °C, with input under-voltage protection, output over-current protection, over-voltage protection, over-temperature protection, short-circuit protection, remote control and remote compensation, output voltage regulation and other functions.

Typical Product List							
Part No	Input voltage range (VDC)	Output power (W)	Output voltage (VDC)	Output current (A)	Ripple & Noise (mV)	Full load efficiency(%) Min/Typ.	Note
CD200-280S12C				40.00			Standard positive logic
CD200-280S12N	400 405				200	87/89	Standard negative logic
CD200-280S12C-H	180-425	200	12	16.66			Heatsink positive logic
CD200-280S12N-H	CD200-280S12N-H						Heatsink negative logic

Input Specification						
Item	Operating conditions	Operating conditions Min. Typ. Max.		Unit		
Max input current	180V input voltage, full load output	180V input voltage, full load output		1.5	Α	
No load input current	Rated input voltage	Rated input voltage		10	mA	
Input surge voltage (1sec. max.)	Inputs above this range may cause permanent damage	-0.7		430		
Start up voltage				180	VDC	
Input under voltage protection	no-load test, full load test can trigger overcurrent protection prematurely.			165	VDC	
	Positive logic: CNT is suspended or connected to 3.5-15V to turn on, connected to 0-1.2V to turn off Negative logic: CNT is suspended or connected to 3.5-15V to turn off, connected to 0-1.2V to turn on					
Control Pin(CNT)						

Output Specification					
Item	Working conditions	Min.	Тур.	Max.	Unit
Output Voltage Accuracy	Nominal input voltage, 0%-100% load		±0.2	±1.0	

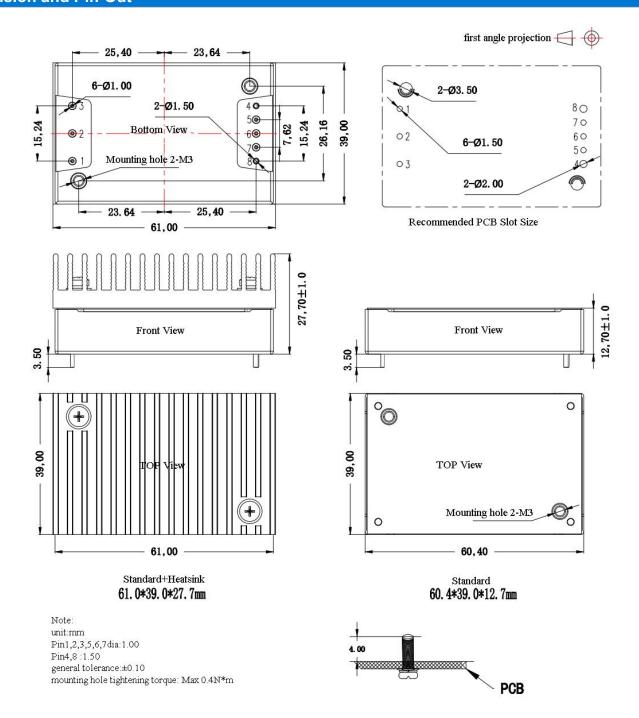
CD200-280S12 Series

DC/DC Converter 1/4 Brick

Line Regulation	Full load, input voltage from low to high		±0.1	±0.2	
Load Regulation	Nominal input voltage, 10%-100% load		±0.1	±0.2	
Transient recovery time	050/		200	250	uS
Transient Response Deviation	25% load step change (step rate 1A/50uS)	-5		5	%
Temperature Drift Coefficient	Full load	-0.02		+0.02	%/℃
Ripple & Noise	20M bandwidth, external capacitor above 470uF		150	200	mVp-p
Output voltage adjustment (TRIM)		-20		+10	%
Output voltage remote compensation (Sense)				105	%
Over temp protection	Maximum temperature of product metal substrate surface	105	115	125	$^{\circ}$
Output overvoltage protection		125		140	%
Output overcurrent protection		17.5		23	Α
Output short circuit protection		H	Hiccup, conti	nuous, self-re	ecovery

General Specification						
Item	Operating of	conditions	Min.	Тур.	Max.	Unit
	I/P-O/P	Test 1min, leakage current < 3mA			2500	VAC
Isolation Voltage	I/P-Case	Test 1min, leakage current < 3mA			2100	VAC
	O/P-Case	Test 1min, leakage current < 3mA			500	VAC
Insulation resistance	I/P-O/P	Insulation voltage 500VDC	100			ΜΩ
Switching frequency				210		KHz
MTBF			150			K hours

Environmental Characteristics							
Item	Operating conditions	Min.	Тур.	Max.	Unit		
Operating Temperature	See temperature derating curve	-40		+105	$^{\circ}\mathbb{C}$		
Storage Humidity	No condensing	5		95	%RH		
Storage Temperature		-40		+125			
Soldering resistance of pins	The solder joint is 1.5mm away from the shell, and the			+350	$^{\circ}\! \mathbb{C}$		
	soldering time< 1.5S						
Cooling requirements		EN60068-2-	-1				
Dry heat requirement		EN60068-2-2					
Damp heat requirement	Damp heat requirement EN60068-2-30						
Shock and vibration		IEC/EN 61373 Body 1 Class B					

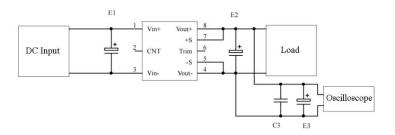

EMC Ch	aracteristics	(EN50155)		
	CE	EN50121-3-2	150kHz-500kHz 79dBuV	
EMI	CE	EN55016-2-1	500kHz-30MHz 73dBuV	
EIVII	DE	EN50121-3-2	30MHz-230MHz 40dBuV/m at 10m	
	RE	EN55016-2-1	230MHz-1GHz 47dBuV/m at 10m	
	ESD	EN50121-3-2	Contact ±6KV/Air ±8KV	perf. Criteria A
EMS	RS	EN50121-3-2	10V/m	perf. Criteria A
	EFT	EN50121-3-2	±2kV 5/50ns 5kHz	perf. Criteria A

Surge	EN50121-3-2	line to line \pm 1KV (42 Ω , 0.5 μ F)	perf. Criteria A
CE	EN50121-3-2	0.15MHz-80MHz 10 Vr.m.s	perf. Criteria A

Physical Characteristics						
Case Materials	Metal bottom shell + black flame retardant material shell (UL94 V-0)					
Heat sink	mension 61*39.0*15mm, weight 52g, aluminum alloy, anodized black					
Cooling method H	Conduction cooling or forced air cooling					
Product Weight	Standard 72g, with heatsink 125g					

Dimension and Pin-Out

		1		2		3	4			5			6			7	•		8
Pin-Out		Vin+		CNT		Vin-	Vout-			-S			TRI	М		+;	3		Vout+
Produc	t Cha	aracter	stic	Curve															
220								95											
200	200	200 200	200	200 200	200	200		90				88	89	89	89	89	89	89	
180								85		83	86								
Output Power(W)						160	©	80	81										
of 140							Efficiency (%)	75											
. 5 120 -							Effici	70											
								65											
100	-40	-20 0	20	40 60	80	100 105		60											
		Boar	d Temperat	ure(°C)					20	40	60	80	100	120	140	160	180	200	

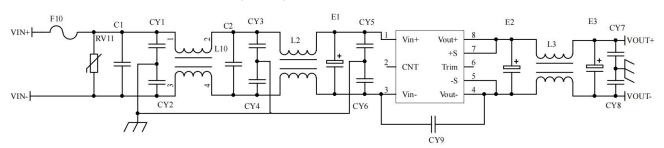

Nota:

- 1. Both the temperature derating curve and the efficiency curve are tested with typical values;
- 2. The temperature derating curve is tested according to our laboratory test conditions. If the actual environmental conditions used by customers are inconsistent, it is necessary to ensure that the temperature of the aluminum casing of the product does not exceed 100 °C, and it can be used within any rated load range.

Design Reference

1. Ripple & Noise

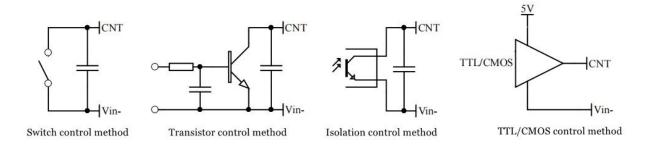
All DC/DC converters of this series are tested according to the test circuit recommended in the following figure before leaving the factory.



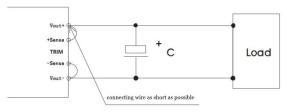
Capacitor value Output voltage	El (µF)	E2 (µF)	C1(µF)	E3 (µF)
3.3VDC		1000		
5VDC		680		
12VDC	100			
		220	1	10
48VDC				
	68	68		
110VDC	00	00		

Output Load (W)

2. Recommended application circuit

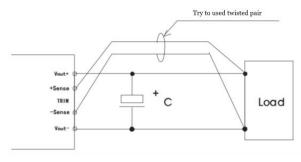

If customer does not use the circuit recommended by our company, please be sure to connect an electrolytic capacitor of at least 100 μ F in parallel at the input end to suppress the possible surge voltage at the input end.

F1	T3.15A/250Vac fusing
RV1	14D 510V Varistor
C1,C2	224/305Vac X2 Capacitor
CY1,CY2,CY3,CY4,CY5,CY6	102/250Vac Safety Y2 capacitor
CY7,CY8	103/2KV ceramic capacitor
CY9	471/250Vac safety Y1 capacitor
E1	100μF/450V Electrolytic Capacitor
E2, E3	470μF/16V low ESR Capacitor
L1,L2	inductance is greater than 5mH, and the overcurrent 1.5A temperature rise is less than 25 $^{\circ}\mathrm{C}$
L3	inductance is greater than 0.2mH, and the overcurrent 17A temperature rise is less than 25 °C



3. Remote control terminal (CNT) control method application recommendation

4. Sense usage and precautions


(1) Without far-end compensation:

Precautions:

- 1. Do not use remote compensation, make sure Vout+ and Sense+, Vout- and Sense- are short-circuited;
- 2. The connection between Vout+ and Sense+, Vout- and Sense- should be as short as possible and close to the pins, otherwise the module may become unstable.

(2) Using remote compensation

Precautions:

- 1. When the long-end compensation lead is used, the output voltage may be unstable;
- 2. If remote compensation is used, please use twisted pair or shielded wire, and keep the lead wire as short as possible;
- 3. Please use wide PCB leads or thick wires between the power module and the load, and keep the line voltage drop below 0.3V to ensure that the power output voltage remains within the specified range;
- 4. The impedance of the leads may cause the output voltage to oscillate or have larger ripples. Please verify it before use.

5. Use of TRIM and calculation of TRIM resistance

The relationship between output change voltage $\triangle U$ and resistance is as follows:

 $\label{thm:continuous} \mbox{Voltage up regulation: add resistor Rup between Trim and output negative}$

Voltage Down: Add resistor Rdown between Trim and output positive

 $Rup=90/\triangle U-5.1 \hspace{0.2cm} (K\Omega) \hspace{1.5cm} Rdown=36^* \hspace{0.2cm} (12-2.5-\triangle U) \hspace{0.2cm} /\triangle U \hspace{0.2cm} -5.1 \hspace{0.2cm} (K\Omega)$

6. This product does not support the use of direct parallel connection to increase the power. If you need to use it in parallel, please consult our technical staff.

Others

- 1 The warranty period of this product is two years. During the normal damage, it will be repaired free of charge. Damages caused by errors in the use method or manufacturing technology, a paid service is provided.
- 2. Our company can provide product customization and matching filter modules. For details, please contact our technical staff directly.