DC/DC Converter 1/4 Brick

Typical Features

- Wide input voltage range 4:1
- Efficiency up to 89%
- ◆ Low no-load power consumption
- ◆ Operating temperature from -40°C to +105°C
- High isolation voltage 1500VDC (input-output) & 1500VDC (input-case)
- Input under voltage protection, output over voltage, short circuit, over current and over temp protections
- Standard 1/4 brick size

CD200-48S24A is a high-performance modular DC-DC converter with the rated input voltage 48VDC (full range from 18V to 75VDC), regulated single output 24V/200W without minimum load limit. It has the advantages of high isolation voltage, operating temperature up to 105°C Max, with the input under voltage protection, output over current, over voltage, over temperature and short circuit protections, input ON/OFF control, output voltage distal end compensation and output Trim function, etc.

Typical Product List							
	Input voltage	Output	Output	Output	Ripple &	Full load	
Part No.	range	power	voltage	current	Noise	efficiency (%)	Remarks
	(VDC)	(W)	(VDC)	(A)	(mVp-p)	Min/Typ.	
CD200-48S24AC	0-48S24AC	252440			8.3 240	87/89	Standard
OD200-40024A0							Positive logic
CD200-48S24AN							Standard
GD200-46324AN	18 - 75	200	24	83			Negative logic
CD200-48S24AC-H	CD200-48S24AC-H	200	00 24 0.	0.5			Heatsink
OD200-40024A0-11						Positive logic	
CD200-48S24AN-H							Heatsink
							Negative logic

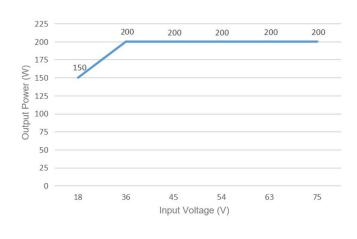
Note: The output power should be derated linearly when the input is within the range of 18-36V. The maximum output power is 150W at 18V input.

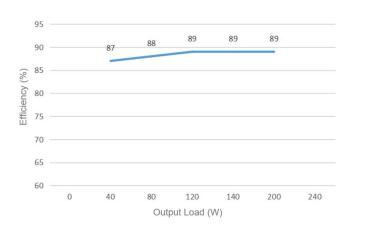
Input Specifications					
Item	Operating conditions	Min.	Тур.	Max.	Unit
Max input current	Input voltage 18V, output 150W			12	Α
No load input current	Rated input voltage			50	mA
Input Inrush voltage (1sec. max.)	The unit could be permanently damaged by input over this voltage	-0.7		80	
Start-up voltage	p voltage			18	VDC
Input under voltage protection	With No load (The over current protection could work in advance at full load)			16	
	Positive logic: CNT no connection or connected to 3.5-15V to turn ON, connected to				
ON/OFF Control (CNT)	0-1.2V to turn OFF the converter.	Reference			
	Negative logic: CNT no connection or connected to 3.5-	voltage -Vin			
	0-1.2V to turn ON the converter.				

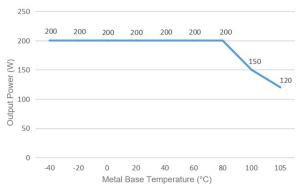
Output Specifications					
Item	Operating conditions	Min.	Тур.	Max.	Unit
Output voltage accuracy	Nominal input voltage, 0%-100% load		±0.2	±1.0	
Line regulation	Full load, input voltage from low to high		±0.1	±0.2	%
Load regulation	Nominal input voltage, 10%-100% load		±0.2	±0.5	
Transient recovery time	050(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		200	250	uS
Transient response deviation	25% load step change (step rate 1A/50uS)	-5		+5	%
Temperature drift coefficient	Full load	-0.02		+0.02	%/°C
Ripple & Noise	20MHz bandwidth, with external capacitor >220uF		150	240	mVp-p
Output voltage adjustment (TRIM)		-20		+10	%
Output voltage distal end compensation (Sense)				+5	%
Over temperature protection	Maximum temperature of the metal base	105	115	125	°C
Over voltage protection		125		140	%
Over current protection		9.1		11.6	А
Short circuit protection		Hie	ccup, contir	nuous, self-ı	ecovery

General Specifications						
Item	Operating of	Operating conditions		Тур.	Max.	Unit
	I/P-O/P	Test 1min, leakage current <3mA	1500			VDC
Isolation voltage	I/P-Case	Test 1min, leakage current <3mA	1500			VDC
	O/P-Case	Test 1min, leakage current <3mA	1000			VDC
Insulation resistance	I/P-O/P	@ 500VDC	100			ΜΩ
Switching frequency				230		KHz
MTBF			150			K hours

Environmental Characteristics					
Item	Operating conditions	Min.	Тур.	Max.	Unit
Operating temperature	Refer to the temperature derating graph	-40		+105	°C
Storage humidity	No condensing	5		95	%RH
Storage temperature		-40		+125	°C
Pin soldering temperature	1.5mm from the case, soldering time <1.5S			+350	-0
Cooling requirement		EN60068-2-1			
Dry heat requirement		EN60068-2-2			
Damp heat requirement		EN60068-2-30			
Shock and vibration		IEC/EN 61373 C1/Body Mounted Class B			

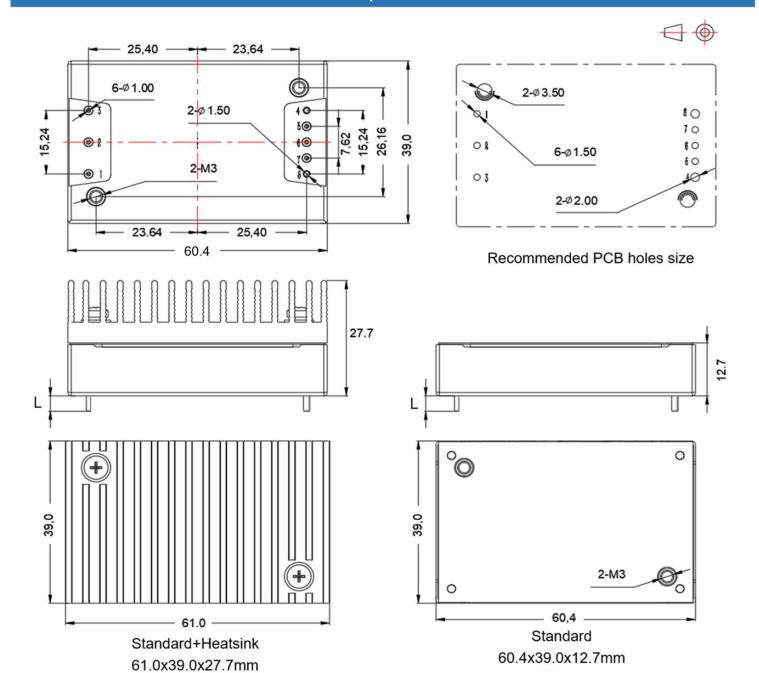

DC/DC Converter 1/4 Brick




EMC Performances				
	CE	EN55032-3-2	150kHz-500kHz 66dBuV	
EMI	CE	EN55032-2-1	500kHz-30MHz 60dBuV	
□IVII	RE	EN55032-3-2	30MHz-230MHz 50dBuV/m at 3m	
	RE	EN55032-2-1	230MHz-1GHz 57dBuV/m at 3m	
	ESD	IEC/EN61000-4-2	Contact ±6KV/Air ±8KV	perf. Criteria B
	RS	IEC/EN61000-4-3	10V/m	perf. Criteria A
EMS	EFT	IEC/EN61000-4-4	±2kV 5/50ns 5kHz	perf. Criteria A
	Surge	IEC/EN61000-4-5	Line to line ± 2KV	perf. Criteria B
	CS	IEC/EN61000-4-6	10 Vr.m.s	perf. Criteria A

Physical Characteristics			
Case materials	Metal base + plastic case in black, flame class UL94-V0		
Heat sink	Dimension 61.0x39.0x15.0 mm, weight 52g, aluminum, anodized black		
Cooling method	Conduction cooling or forced air cooling with fan		
Unit weight	Standard 72g, with heatsink 125g		

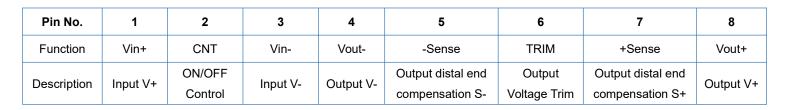
Product Characteristics Graphs



Note:

- 1. The output power and the efficiency in the graphs have been tested with typical values.
- 2. The data in temperature derating graph is tested under laboratory test conditions. It is recommended to keep the temperature of the Metal base not more than 80 °C when the converter operates at the rated load for the application.

Mechanical Dimensions and Pin-Out Function Description


Note: Unit: mm

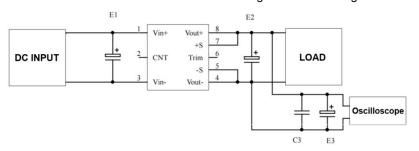
Pin 1,2,3,5,6,7 diameter: 1.00 Pin 4,8 diameter: 1.50

Tolerance: X.X ±0.50mm, X.XX ±0.10mm

Screwing torque: 0.4N.m Max

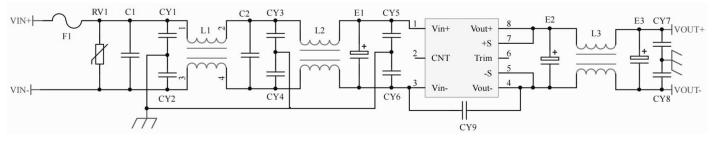
Pin Length L=3.7mm

4.00

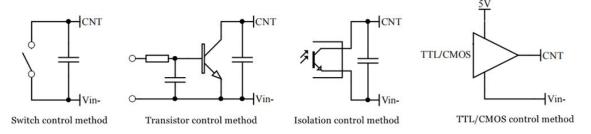

PCB

Recommended Circuits for Application

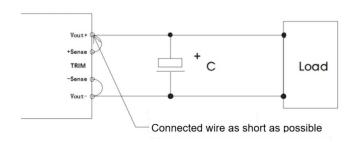
1. Ripple and Noise


All this series of converters will be tested according to the circuit diagram below before shipping.

Capacitance Output Volt.	E1 (µ F)	E2(µF)	C3 (µ F)	E3 (µ F)	
3. 3VDC		1000			
5VDC	100	680		10	
12VDC		470	1		
•••••					
48VDC					
	CO	68	1		
110VDC	68				


2. Typical application circuit

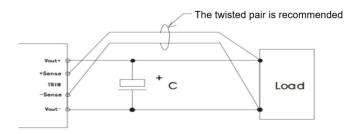
If this circuit diagram recommended is not adopted, please connect an electrolytic capacitor \geq 100 µF in parallel at the input to suppress the possible surge voltage.


F1	T20A/250V Time-delay fuse
RV1	14D 100V Varistor
C1, C2	105/250V Polyester Film Capacitor
CY1, CY2, CY3, CY4, CY5, CY6	102/250Vac Y2 capacitor
CY7, CY8	103/2KV Ceramic SMD Capacitor
CY9	471/250Vac Y1 capacitor
E1	220μF/100V Electrolytic Capacitor
E2, E3	220μF/35V Electrolytic Capacitor
L1, L2	>2mH, temperature rise less than 25°@12A
L3	>100uH, temperature rise less than 25°@8.3A

3. ON/OFF control (CNT) application

4. Application for Sense

1)With NO distal end compensation



Notes:

- 1. Vout+ & Sense+, Vout- & Sense- should be shorted when distal compensation is not needed
- 2. The lead wire between Vout+ and Sense+, Vout- and Sense- should be as short as possible, and close to the pins, or else the output may be unstable.

2)With distal end compensation

Notes:

- 1. The output voltage may be unstable if the compensation cables are too long.
- 2. The Twisted pair or shielded cables are recommended, the cable length should be as short as possible.
- 3. Wide copper path on PCB or thick lead wires between the power supply and the load should be used to achieve the line voltage drop <0.3V. The target is to keep output voltage within the specified range.
- 4. The leads wire resistance may create the output voltage oscillation or larger ripples. Please verify it before to use.

5. TRIM & TRIM resistance calculation

The calculation of $\triangle U$ and Rup & Rdown:

Rup=70/ \triangle U-5.1 (K Ω)

Rdown=28*(24-2.5- \triangle U)/ \triangle U-5.1 (K Ω)

Voltage-up: Add Rup between Trim and Vout-

Voltage-down: Add Rdown between Trim and Vout+

Others

The product warranty period is two years. The failed product can be repaired/replaced free of charge if it operates at normal condition. A paid service shall be also provided if the product fails after operating under wrong or unreasonable conditions.