Input 36V-75V, Output 250V/1.05A, Industry Standard Half Brick

Contents

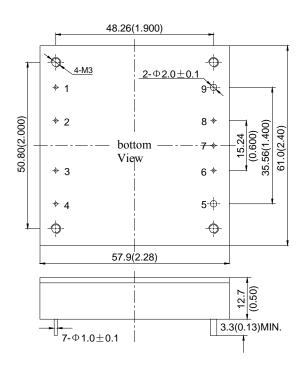
Contents	1
Ordering Information	1
Outline Diagram	2
Specification	2
Design Considerations	4
Recommended Layout	4
Input Voltage Range	4
External Capacitance	4
Safety Consideration	4
Series and Parallel Operation	5
ESD Control	5
Quality Statement	5
Contact Information	

RoHS

Features

- ◆ Standard Half Brick (61.0mm×57.9mm×12.7mm)
- ◆ Input Under Voltage Protection (30 to 36Vdc Turn off)
- ◆ Positive Logic Control (3.5V to 15V or floating Turn on)
- ◆ Output Voltage Adjust Range: ±10% of the rated output voltage
- ◆ Output Short-circuit Protection, automatic recovery
- ◆ High Efficiency up to 93% (48V, full load)
- ◆ 1500Vdc Isolation Voltage
- ♦ Operation Ambient Temperature -40°C to +85°C
- ◆ 110°C Typ. Over Temperature Protection
- ◆ Operation Baseplate Temperature -40 °C to +100 °C
- ◆ Applications:Telecom/ datacom system equipments, bus ,metro, tram and Railway & Rail transit ,Industrial control equipments and Instrument
- ◆ Compliance with EN50155 railway standard

Ordering Information


See Contents for individual product ordering numbers.

Suffix	Description	Ordering No.
	Positive Logic Control:	CRDH260-48S250
N	Negative Logic Control	CRDH260-48S250N
В	Equipped with metal baseplate. A heatsink can be installed on the baseplate.	CRDH260-48S250B
ВС	Equipped with plastic case	CRDH260-48S250B0
NBC	Negative Logic Control. Equipped with metal baseplate and plastic case	CRDH260-48S250NBC

Input 36V-75V, Output 250V/1.05A, Industry Standard Half Brick

Outline Diagram

Pin	Symbol	Function				
1	-Vin	Negative Input				
2	NP	No Pin				
3	CNT	Remote Control Pin				
4	+Vin	Positive Input				
5	+V ₀	Positive output				
6	+S	Positive Remote Sense				
7	TRIM Output voltage adjust					
8	-S	Negative Remote Sense				
9	9 -Vo Negative Output					
Notes:all dimensions in mm(inches)						
Tolerances:X.X±0.5mm(X.XX±0.02)						
X.XX±0.25mm(X.XXX±0.010)						

Specification

Unless otherwise specified, all values are given at: 25° C, one standard atmosphere pressure, pure resistive load and basic connection.

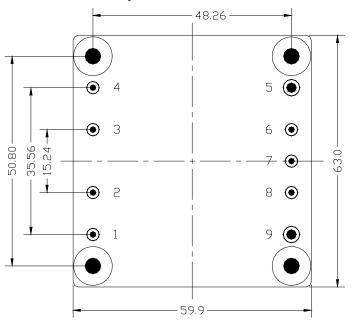
Inp	ut	Symbol	Min	Тур	Max	Unit	Conditions
Input V	oltage	V_{in}	36	48	75	Vdc	_
Input C	urrent	I_{in}	ı	ı	6.1	A	V _{in} =18Vdc, I _O =8.4A
Positive Logic	ON	-	3.5	-	15	V	
Remote	OFF	-	-0.7	_	1.5	V	Refer to -V _{in}
Control	Current	1	-	-	1.0	mA	_
Start-up De	elay Time	T_{delay}	ı	40	ı	ms	_
Under Voltag	e Threshold	V_{UVLO}	30.0	ı	35.0	Vdc	50% load test
Under Voltag Hyste		$\triangle V_{UVLO}$	_	1.5	_	Vdc	_

Output	Symbol	Min	Тур	Max	Unit	Conditions
Output Voltage	V_{O}	247.5	250.0	252.5	Vdc	V _{intyp} , Io,nom
Output Current	$I_{O,nom}$	_	1.05	_	A	_
Line Regulation	S_{V}	_	-	±0.3	% V _O	V _{in} : 18~75Vdc, I _O =8.4A
Load Regulation	S_{I}	_	_	±0.5	% Vo	$V_{in}=V_{intyp}$, $I_O: 0A \sim 8.4A$

Input 36V-75V, Output 250V/1.05A, Industry Standard Half Brick

Continue

Output	Symbol	Min	Тур	Max	Unit	Conditions
Output Over Current Protection Range	$I_{O,lim}$	110	-	170	%Io	V _{in} =V _{intyp}
Output Short-circuit Protection		automatic recovery				V _{in} =V _{intyp}
Peak to Peak Ripple and Noise	$ riangle V_{pp}$	I	1000	2500	mV	V _{in} =V _{intyp} , Io,nom, 20MHz bandwidth, a 10μF Tantalum capacitor and a 1μF ceramic capacitor applied at output
Output Overshoot	V_{TO}	0	-	25	Vdc	V _{in} =V _{intyp} ,I _{O,nom} , pure resistiveload
Capacitive Load	Co	0	_	400	μF	pure resistive load


Ger	neral	Symbol	Min	Тур	Max	Unit	Conditions
Load	Recovery Time	$\triangle V_{tr}$	1	±1250	_	mV	25%~50%~25%Io,nom or
Transient	Voltage Deviation	t_{tr}	1	200	_	μs	50%~75%~50%Io,nom; 0.1A/μs
Effic	eiency	η	90	92.5	-	%	V _{in} =V _{intyp} , Io,nom
Switching	Frequency	f_s	ı	240	-	kHz	_
Isolation	Resistance	R _{iso}	50	-	-	ΜΩ	_
			1500	ı	ı	Vdc	Input to output Leak Current: 1mA
Isolation	n Voltage	V_{iso}	1050	-	-	Vdc	Input to case Leak Current: 1mA
			500	_	_	Vdc	Output to case Leak Current: 1mA
M	ГВГ	_	_	2×10 ⁶	_	h	BELLCORE TR-332,
	g Ambient erature	_	-40	_	+85	$^{\circ}\!\mathbb{C}$	See the derating curve
Storage To	emperature	_	-55	-	+125	$^{\circ}$ C	
	erature ficient	S_{T}	_	_	±0.02	%/°C	_
Relative	Humidity	_	10	_	90	%	No condensing, 40°C±2°C
Protection	nperature Reference oint	T_{ref}	105	110	115	$^{\circ}$	See Over Temperature Protection consideration
	nperature Hysteresis	$\triangle T_{ref}$		10		$^{\circ}$	consideration
Hand S	oldering	Maximum soldering Temperature $< 425 ^{\circ}\text{C}$, and duration $< 5\text{s}$					
Wave S	oldering	Maximum soldering Temperature $< 255 ^{\circ}\text{C}$, and duration $< 10\text{s}$					

Input 36V-75V, Output 250V/1.05A, Industry Standard Half Brick

Design Considerations

Recommended Layout

NO	D						
NO.	Recommendation & Notes						
Pad Design	5、9 Pad holes: 2.5mm,pad diameter including hole:5.0mm; 1-4、6-8 Pad holes: 1.5mm, pad diameter including hole:3.3mm; the fixed holes at the four corners are metallized, with diameter of 4.1mm and pad diameter including hole of 8.5mm is keepout layer.						
Safety	Isolated Converters, care to the spacing between input and output, input and protective ground output and protective ground.						
Electri cal	The Vin(-) and Vo(-) planes should be placed under of the converter separately. Avoid routing sensitive signal or high disturbance AC signal under the converter.						

Input Voltage Range

The input voltage range of the DC/DC converter is 36V to $75V_{\circ}$. The input impedance of the converter looks like a negative resistor, which can interact with the reactance of the power bus (including any filter elements that have been added to the input of the converter), causes an unstable condition. Depending on the internal transformer's impedance, the external impedance usually should not exceed the 10% of the internal. So, the source impedance of the Power bus should be kept as low as possible.

The method to determine whether the impedance of the power bus too high or not is to decrease the converter's input voltage from higher to lower gradually, if the output voltage decreases (unstable sometime) with the lower input

External Capacitance

Unless special purpose (i.e. prolonging hold-up time, input impedance matching), the recommended input filter's capacitance ranges $100\mu\text{F}$ - $220\mu\text{F}$, which not only offers a stable system, and reduces the cost, but also lessens the inrush current when the power supplies.

When larger capacitance is required, a circuit of suppressing the inrush current is recommended when the regulator start-up and a discharge circuit is recommended when the output dropped, ensuring the reliability and safety of other equipments in the system.

Safety Consideration

The converter, as a component for the end user, should be installed into the equipment, and all the safety considerations are achieved under certain condition. It is required to meet safety requirements in system design. The converter output is considered SELV, and the expected input is considered TNV2, the primary to secondary is basic insulation to EN60950. The maximum operating temperature for PCB is $170\,^{\circ}\text{C}$.

To avoid fire and be protected when short circuit occurred, it is recommended that a fast blow fuse with rating 2.5 to 3 times of converter's continuous input peak current is used at the input terminal.

Input 36V-75V, Output 250V/1.05A, Industry Standard Half Brick

Series and Parallel Operation

The converters should not be paralleled directly to increase power, but they can be paralleled each other through o-ring switches or diodes. Make sure that every converter's maximum load current should not exceed the rated current at anytime if they are paralleled without using external current sharing circuits. For the case that there is no external current sharing circuit, but power needs to be increased, please use Trim pin to adjust each converter's output voltage, to load the current as equal as possible in operating (When the load changes in a wide range, the method will not work).

The converters can operate in series. To prevent against start-up failure due to start up time difference, SBD with low voltage difference can be paralleled at the output pins(SBD negative terminal connect to the positive pin of the output) for each converter.

ESD Control

The converters are processed and manufactured in an ESD controlled environment and supplied in conductive packaging to prevent ESD damage from occurring before or during shipping. It is essential that they are unpacked and handled using an ESD control procedures. Failure to do so affects the lifetime of the converter.

Quality Statement

The converters are manufactured in accordance with GJB 9001C system requirements, and are monitored 100% by auto-testing system, 100% burn in.

The warranty for the converters is 5-year.